Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Biol. Res ; 49: 1-9, 2016. graf, tab
Article in English | LILACS | ID: biblio-950841

ABSTRACT

The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.


Subject(s)
Humans , Animals , Guinea Pigs , Mice , Rats , Genetic Variation , Disease Models, Animal , Alzheimer Disease/genetics , Aging/genetics , Animals, Genetically Modified , Sequence Analysis, Protein , DNA Barcoding, Taxonomic
2.
Biol. Res ; 43(2): 251-258, 2010. ilus
Article in English | LILACS | ID: lil-567540

ABSTRACT

Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a signifcant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.


Subject(s)
Animals , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , DNA Methylation/physiology , Hippocampus/metabolism , Memory/physiology , Recognition, Psychology/physiology , Brain-Derived Neurotrophic Factor/physiology , Hippocampus/physiology , Rats, Sprague-Dawley
3.
Biol. Res ; 40(4): 381-384, 2007.
Article in English | LILACS | ID: lil-484866

ABSTRACT

Convergence of clinical, empirical, methodological and theoretical approaches aimed at understanding the relation between brain function and cognition, is by now standard in most if not all academic programs in the area of Cognitive Science. This confederation of disciplines is one of the liveliest domains of inquiry and discussion into some of the most fundamental -and historically resilient- questions human beings have posed themselves. The contributions gathered in this special issue of Biological Research, directly inspired by the ongoing work at the Instituto de Sistemas Complejos de Valparaiso and the December 2006 CONICYT-INSERM-SFI workshop "Networks in Cognitive Systems / Trends and Challenge in Biomedicine: From Cerebral Process to Mathematical Tools Design", Chile, represent an explicit invitation to the reader to dive deeper into this fascinating terrain.


Subject(s)
Humans , Biomedical Research , Brain/physiology , Cognition/physiology , Models, Biological , Nerve Net/physiology
4.
Biol. Res ; 40(4): 479-485, 2007. ilus
Article in English | LILACS | ID: lil-484873

ABSTRACT

In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity.


Subject(s)
Humans , Cognition/physiology , Neural Networks, Computer , Nerve Net/physiology
5.
Biol. Res ; 39(2): 209-220, 2006. ilus, tab
Article in English | LILACS | ID: lil-432423

ABSTRACT

Rest activity pattern was studied in wild-captured males of Octodon degus (n=9), Octodon bridgesi (n=3), and Spalacopus cyanus (n=6) (Rodentia: Octodontidae). Ten-minute resolution actograms were constructed from data obtained by an automated acquisition system. After two months of habituation to a stable light-dark schedule, recordings were performed in isolation chambers under a 12: 12 Light Dark schedule. A free-running period (constant darkness) was recorded for O. bridgesi and S. cyanus. O. degus displayed a crepuscular pattern of rest activity rhythm. Entrained O. bridgesi and S. cyanus displayed nocturnal preference, with rest anticipating light phase and without crepuscular activity bouts. Under constant darkness, active phase occurred at subjective night in O. bridgesi and S. cyanus. Wild-captured O. bridgesi and S. cyanus possess a circadian driven nocturnal preference, while wild O. degus displays a crepuscular profile. Diurnal active phase preference of wild S. cyanus colonies observed in the field could not be explained solely by photic entrainment, since social and/or masking processes appear to be operative. The genus Octodon includes species with diverse chronotypes. We propose that crepuscular diurnal pattern observed in O. degus is a recent acquisition among the octodontid lineage.


Subject(s)
Animals , Male , Circadian Rhythm/physiology , Rest/physiology , Rodentia/physiology , Adaptation, Physiological , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL